THE PICK

OPERATING

SYSTEM

PART 1: INFORMATION MANAGEMENT

BY RICK COOK AND JOHN BRANDON

This information-oriented operating system has a built-in relational database and multiuser capabilities
[Editor's Note: You might ask why BYTE has included an operating system article in this month's database theme. We had two reasons. First, the Pick operating system includes a built-in relational database and an easy-to-use English-like query language. Second, Pick, like UNIX, is a large, complex operating system that is migrating from minicomputers to microcomputers and is well suited for managerial and business applications.

 This month, in part 1, Rick Cook and John Brandon introduce the Pick operating system and discuss its structures, query language, and dictionaries.]
THE REAL JOB of a computer in a management context is reducing data to information and helping people manage the information. One way to measure how difficult that can be is to consider all the times you confuse data with information and end up processing data instead of managing information.

 Data includes such things as invoice numbers and customer addresses, price lists, and style codes. Information answers questions: Am I making or losing money? Have I got enough material on hand to produce what I need for next month? Where did I put that magazine article? How well is George doing in sales? Why does it cost so much to answer a customer letter? And how much does it cost, anyway?

 By using computers you can sort out relevant data, better discern important relationships, and apply both to the questions at hand. But on most computer systems, machine needs (and not user needs) predominate. Instead of helping you squeeze information out of the real world, the computer traps you in an unreal world conditioned on its own structure.

 Ideally, the structure of the query put to the computer should match the structure of the problem. You should be able to think in terms of questions and answers and convey them to the computer without having to translate them into a language of files and fields, record lengths, and search keys.

 Unfortunately, reality is not static. Not only does the data change, but relationships change, too. You try new ways of doing things, new people join the business, responsibilities shift, even the rules and laws you follow change. The computer's metastructure should adapt to these changes as they occur.

 The Pick operating system represents one attempt to meet this challenge. Pick is a virtual-memory multiuser operating system specifically designed to help you get the information you need. The structure of Pick focuses your attention on information rather than on the workings of the computer.

 Although it is an extremely sophisticated system, Pick is easy for nonprogrammers to use. In a few minutes, you can learn Pick's English-like query language well enough to begin answering complex questions about data stored in the built-in relational database. With a little more work, you can learn to modify the commands, write elaborate instruction sequences that can be stored and used as needed, and work in the high-level programming language that is part of the system.

 The closest thing to Pick in size and feel is probably UNIX. Both are big, complex operating systems that are migrating down to the microcomputer world after having been developed and refined on minicomputers. Both systems are sophisticated and very powerful, and both tend to produce vehement partisans. One of the big differences, though, is that UNIX partisans tend to be programmers, especially systems programmers. Pick's partisans tend to be users and applications programmers. Of the two systems, UNIX is the more powerful for scientific and engineering applications. Pick, by its structure, is better adapted for business and managerial applications.

 But Pick is hardly perfect. Structured programming purists shudder over the fact that Pick's only high-level language is an extensively reworked version of BASIC. The present release is multiuser, but not multitasking, and rather lacking in communications capability. Some of the UNIX-type concepts, such as pipes and filters, which are becoming widely available on other operating systems, are not fully developed in Pick. Software hackers generally dislike Pick because it is difficult to get inside the system and play with it.

 On the other hand, for the manager who needs to find out what's going on, the applications programmer who has to get a piece of software up and running, or anyone with a lot of information to organize, Pick's design and structure make it hard to beat.

 If Pick is so good, you might well ask, why isn't it better known? That's a question Pick enthusiasts frequently ask themselves. Part of the answer is that, until recently, Pick was confined to the minicomputer world, where it was generally sold under a house name. Microdata, for instance, calls its version of Pick "Reality." Another reason is that, unlike some operating systems, Pick has been carefully controlled. It is not available on all machines, and Pick Systems Inc. has no intention of making it available for all of them. Pick software is highly portable, but the operating system itself is not. Getting Pick running on a new machine takes a lot of work.

 Although most of the microcomputers running Pick are high-end multiuser systems costing $10,000 and more, Pick Systems Inc. has recently transported Pick to the IBM PC XT. The PC version of Pick is a full implementation that supports up to three users and sells for $495.

AN OVERVIEW OF PICK'S STRUCTURE

Although Pick is technically an operating system, it contains much more than the regular operating-system functions. As part of the operating system, Pick has a wealth of features that are applications programs or add-ons in other systems.

 The heart of the Pick operating system is its relational database. In Pick, the database-management system is an inherent part of the operating system and not a utility or an add-on.

 Other parts of the operating system include an English-like nonprocedural query language called Access; a compiled version of BASIC with major enhancements for business and data management: Proc, a stored-procedure processor that lets you write and

store elaborate command sequences, much like scripts in UNIX; a command processor called Terminal Control Language (TCL, pronounced "tickle"); a print spooler: and a number of other utilities. You will spend most of your time with Access, TCL, Proc, and BASIC.

 Most of the utilities associated with microcomputer operating systems are either invisible or nonexistent in Pick; as much as possible, chores like file handling and memory allocation are done by the operating system. You are free to concentrate on the information. However, Pick is rich in utilities related to information handling.
 Underpinning all of this is an elaborate and complex software structure. Pick is implemented as a virtual machine with limited, carefully optimized connections to the underlying hardware through a section of code called the monitor. Pick's designers started out by coming up with the best possible paper computer they could imagine for managing information. Then they wrote an operating system to emulate their design on real computers.

 The Pick virtual machine has its own internal structure and even its own pseudo-assembly language, all designed for data-management tasks. On a microcomputer, these features are implemented in software, right down to the virtual-memory management system. One result of having a virtual machine implemented in software is a high degree of applications portability. Any Pick machine will run almost any piece of Pick software. The only difference between running an application on an IBM PC XT and an IBM 4300 mainframe is that the application will probably run slower on the PC XT.

 The usual penalty for having such an elaborate software superstructure is a loss of speed. You would expect that Pick would be slow, especially on something like the 8088 microprocessor in an IBM PC XT. That's not the case.

 While the PC XT implementation is noticeably slower than Pick on 68000-based microcomputers, it doesn't drag. To someone used to microcomputers, Pick appears somewhat slow because most Pick implementations are designed to work with terminals

via serial I/O (input/output) ports rather than the kind of memory-mapped video used on most microcomputers.

 Processing speed, however, is good, especially on things like searches and sorts. The Pick operating system contains many commonly used functions, such as database management and the high-level BASIC language. Because these functions are so tightly integrated with the overall operating system, they tend to run fast.

 There are a couple of other reasons why processing speeds stay reasonable. For one thing, Pick executes as machine-language code on whatever machine it is running on. Other operating systems that use the virtual-machine concept are usually interpreted

or compiled/interpreted. Another reason is that Pick is carefully optimized for each implementation to be as fast as possible. That is one of the reasons Pick isn't as portable as an operating system written in a high-level language. That said, it's important to note that Pick is not a number-crunching system. There are better operating systems for scientific and engineering work or for anything else that requires a lot of calculation. Pick will score poorly on a computational benchmark such as the Sieve of Eratosthenes.

 On the other hand, Pick will shine in an information-management test, particularly one with a lot of complex data manipulation. Because the database is relational and because of the way the system stores information, it can usually retrieve any piece of data

with one or two disk accesses.

THE PICK FILE STRUCTURE

Part of Pick's strength comes from its file structure. Everything is contained in a file and the files are organized hierarchically.

 There are three kinds of files in Pick, but you only have to deal with two of them-data files and dictionary files. (The third kind, binary files, hold compiled code and stored lists.) Both kinds of files are structured in the same manner. Broadly, the distinction between data and dictionary files is that data files hold the data and dictionary files establish and maintain relationships between the data.

[image: image1.emf] In Pick, there is only one type of data file, but there are three types of dictionary files. The system dictionary defines the users (accounts) on the system. The master dictionary for each user defines the user's vocabulary, while data dictionaries describe the data and define the relationships (see figure 1).

 One of the beauties of this separation of data and dictionary files is that it makes it easy to change relationships without affecting the data, and vice versa. Dictionary files can be edited, updated, or changed completely without disturbing the data entries to which they refer. In the same fashion, you can edit and update data without making any modifications to the dictionaries or disturbing the relationships already created. This gives you the flexibility to change the system as the real world changes.

 If, for example, you need to go from five-digit to nine-digit ZIP codes, you can call up the ZIP-code item in the appropriate dictionary and change the length from five to nine digits. That takes about 30 seconds. Since data is stored only once in a well-designed Pick data structure, that change ripples through to every use in the system. (You still have the problem of updating the existing ZIP codes. Pick is neat, but it isn't magic.)

[image: image2.emf] If you need five-digit ZIP codes for some uses and nine-digit codes for others, you can easily specify that, too. The system will present only the relevant five digits to the users that need it that way. if you only have five digits, there is no need to enter nulls or asterisks to take up the additional space. In fact, the system doesn't care how many characters are entered as the ZIP code; 5, 9, 20, 200, or none are all acceptable to the system. Of course, the applications programs would normally include checking routines to make sure only acceptable values were used. But that is your choice, not something forced on you by the database-management program.

 Because of the data file and dictionary structure, data can be stored in any convenient form or length in the data file. Pick includes a large number of conversions and maskings that can be applied from the dictionary to produce output in the desired form.

 The basic subdivisions of a Pick file are:

File

Item

Attribute

Value

Subvalue

 A file is just what it is in any system: a collection of information that is (at least theoretically) related. In Pick, files can be any length and space is dynamically assigned for them. A single file can grow to fill an entire disk or shrink to almost nothing without intervention by the user or programmer.

 An item in Pick is roughly equivalent to a record in a conventional database system (see table 1). In the present implementation of Pick, items in a file cannot be longer than 32K bytes. If that's not long enough for your purposes, you can link several items. However, in Pick, it is considered better design to use a number of small items rather than one large one. It is uncommon for items to seriously press the 32K-byte limit.

 An item is normally subdivided into attributes in the same way a record in a conventional database is subdivided into fields. Here, however, the parallels are less distinct. For one thing, within an item, the attributes, values, and subvalues that can make up items are not positionally oriented. Attributes, values, and subvalues are free to grow and shrink as needed. Like an item, the size of an attribute is variable up to 32K bytes, although the total length of the item containing the attribute must also stay under 32K bytes.

 What's more, attributes can be added to an item at any time without disturbing the other attributes, relationships, or programs that use the item. The added attributes become a part of the item and they can be operated on in the same way. They are just ignored by the programs that don't need them.

[image: image3.png]PART NUMBER
SEschiPTiON
QANTITY on aND
e

332172 APC BOARD A 150 A 2550
53/ NUT A 267424 2
SUB-37386 A SUBASSEMBLY FOR MISSILE A 2 A 15678242

N
\ \'AMC 1 \—AMC 5 7

ITEM=ID (AMC 0)

 To separate things inside an item, Pick uses delimiting characters rather than predefined field and record lengths. Attributes are delimited by hexadecimal FE (decimal 2 54), values are delimited by hexadecimal FD (2 53), and subvalues by hexadecimal

FC (252). The user doesn't have to worry about inserting these marks: it's done automatically. Attributes within an item are referenced by their attribute number.

 Figure 2 shows three typical items (or records) in a data file, in this case an inventory file. The attributes in each file are separated by a caret, which is the way Pick documentation represents the attribute delimiter. Notice that the attributes vary in length from item to item, and each takes up only the amount of space it needs. Note, too, that the file consists entirely of data. Information on what that data means is kept in the corresponding dictionary file.

 The exception to this kind of freestyle format is the first attribute in an item. This is attribute 0, or the ITEMID, which is the key for retrieving an item from a file. (See the text box, 'Attribute 0, Modulo, and Separation" on page 190.) It is limited to 50 characters and it must be unique within the file. In other words, there can't be two items with the same attribute 0 in the same file, although there can be in different files.

 An attribute other than attribute 0 can have multiple values, and each value can have multiple subvalues. By using attributes, values, and subvalues, a programmer can construct elaborate three-dimensional data matrices within a Pick item. This structure is called a dynamic array, and once you get used to it, it is a powerful tool for creating data structures that closely model the real world.

 The Pick file structure explains a great deal about the power Pick offers. To really understand the way in which Pick handles data, you have to look at two closely related subjects-the Access query language and the way a data dictionary works. The best place to start is with Access and what it does. In a very real sense, data dictionaries exist to support Access.

THE ACCESS QUERY LANGUAGE

[image: image4.png]DATA DICTIONARY DATA FILE "INVENTORY"

DATA ITEMS N

[aTTRIBUTE-DEFINING 1TEMS TEM-ID

PART- QUANTITY-
NUMBER DESCR‘CPTION ON-HAND m VALUE

c

LIST INVENTORY DESCRIPTION QUANTITY-ON-HAND (PRICE) VALUE

DESCRIPTION QUANTITY ON HAND PRICE EACH TOTAL VALUE
PC BOARD 150 25.50

Access is designed to make it simple to turn data into information. It is easy to use and lets you get fast answers to even very complex questions.

 The simplicity of Access stems primarily from three things: it uses words or universally recognized symbols (such as +, >, =) to express concepts, it requires a minimum of extraneous information from the user, and it works the way a user thinks. One result is that novices who are taught Access quickly feel at home with it. They can formulate questions in a perfectly natural way and then ask those questions in almost the same format.

[image: image5.png]AMC 0
ITEM-ID

AMC 1

AMC 2

AMC 3

AMC 4

AMC 5

AMC 6

AMC 7

AMC 8

AMC 9

AMC 10

DICTIONARY ITEM

PRICE

PRICE EACH

PC BOARD

(SEVEN SPACES,

|—D—ESCRIPTION QUANTITY ON HAND PRICE EACH TOTAL VALUE

RIGHT JUSTIFIED)

DATA ITEM

AMC O
ITEM-ID

AMC 1
DESCRIPTION

AMC 2
QUANTITY ON HAND

AMC 3
PRICE

LIST INVENTORY DESCRIPTION QUANTITY-ON-HAND PRICE VALUE

25.50

 Commands in Access are called verbs. They are action words like LIST or SORT. The usual sequence of an Access command is verb, filename (selection criteria, sequence criteria, report output attributes, and modifiers). However, you can use any sequence that seems comfortable as long as it starts with a verb. The elements in parentheses are optional. This follows the sequence you would use in asking a question of another person. "How many of the new PC boards for the RS-232C interface have we got on hand and what departments have them?" becomes:
LIST THE INVENTORY FILE WITH PARTNUMBER "RS-232C-BOARD" DEPARTMENT TOTAL QUANTITY-ON-HAND
This example assumes you have an Inventory file and attributes identified as PARTNUMBER, DEPARTMENT, and QUANTITY-ON-HAND.

 In addition to verbs such as LIST and SORT, Access includes relational operators such as > and = and Boolean operators such as AND, OR, and NOT, which can modify them. You can stack up to nine separate selection criteria separated by AND operators into a single Access sentence. If you don't get the information you need with the first sentence, you can reformulate the query and try again or follow where the answer leads you. In use, Access is highly interactive. One question tends to lead to another as you zero in on the information you want or pursue the questions raised by the answer to the first question.

 One way a system turns information back into data is to tell you more than you want to know. Computers are experts at this. In our example, all the questioner wants to know is how many parts are on hand and who has them. Other people in the company might need to know the part's price, vendor, quantity on order, quantity on back order, the amount owed the vendor, the shipping weight, when the next shipment is due to arrive, and perhaps 50 other things. All this information might be in the database, but giving any of it to the questioner would be unnecessary.

 To prevent this, Access lets you specify selection and output criteria. This system shows you only what you are interested in. The rest of the information remains invisible and, in fact, may not be accessible to you as a security measure.

 Here's a more complex Access sentence:

SORT INVENTORY WITH QUANTITY-ON-HAND < "50" AND WITH LEAD-TIME > "30" OR WITH QUANTITY-ON-HAND < "10" AND WITH LEAD-TIME < "30" BY VENDOR BREAK-ON VENDOR-NAME "'P'' PARTNUMBER DESCRIPTION LEAD-TIME QUANTITY-ON-HAND LPTR

This sentence produces a printed report (LPTR stands for line printer) consisting of part numbers, descriptions, lead times, and quantities on hand for parts with lead times of more than 30 days with less than 50 in stock and lead times of less than 30 days if there are less than 10 in stock. The report will be printed out with each vendor starting on a new page (break-on) and with the headings "Part Number," "Description;' "Lead Time;' and "Quantity on Hand:'
 These are simple examples of Access sentences, the sort of thing you might be doing the first day or two you use Pick. Access contains a rich variety of commands and options that give it great flexibility in managing information.

[image: image6.png]ITEM-1D
AMC 0

AMC 1
AMC 2
AMC 3
AMC 4
AMC 5
AMC 6
AMC 7
AMC 8

AMC 9

AMC 10

DICTIONARY ITEM
VALUE l
A

99

k—————-————.
TOTAL VALUE

—'____*

MR2,

A;2%3

| 10

 Generally, an Access sentence has three parts: the commands to select and operate on the data, the output field information telling the system what the user wants to see, and modifiers and options that let the user specify the output format, print headers, and so forth.

 In Access, the same piece of information can be called by different names and it is easy to define synonyms.

 Synonyms can be defined for the commands in Access, too. If you prefer DISPLAY to the Access verb LIST, it is simple to define DISPLAY as a synonym for LIST. If you want to use words like "please' in Access but have the computer ignore them, that's easy to do, too. In short order the results begin to look like natural-language programming. It also makes foreign-language versions of Pick easy to implement. All the commands, verbs, etc., can be given their foreign-language equivalents. If a company has users who are more fluent in Spanish, French, or any other language written with ASCII (American Standard Code for Information Interchange) characters than with English, there is no problem accommodating them. Meanwhile, no one else on the system is affected, no matter how much a user plays with the entries in his or her account. In the same way, a programmer can define a complex series of commands as a procedure, or "proc;' to be called by a single word. In this way an inexperienced user can perform complicated jobs in a simple, natural fashion.

DATA, DICTIONARIES, AND ACCESS

Access works closely with the Pick dictionary files, especially each user's master dictionary and the data dictionaries to which it points. Each data file is pointed to by a data dictionary that defines the data and its relationships. Attributes in a data-file item are defined by corresponding items in the data dictionary. The data dictionary can also define information that isn't in the file, such as quantities that are computed rather than stored directly or data that is elsewhere in the database.

 This can get confusing. Because Pick's file structure is so regular, there are items and attributes in both dictionary and data files. To keep things straight, we will call the item in the dictionary the DICT-ITEM and the attributes in the dictionary item the DICTATTs. The data item will be DATA-ITEM and its attributes will be DATA-ATTs.

 Figure 3 shows how the DICT-ITEM and the DATA-ATT relate. The DICT ITEM PRICE defines and specifies the fourth DATAATT for each DATA-ITEM in the data file. To the system, the fourth DATAATT in this particular data file is known by the name PRICE. That data can be called and operated on by name or a name defined as a synonym. For the user, the main significance of attribute 0, the ITEMID, is that it serves to name the item.
 Notice that both the DICT-ITEM and the DATA-ITEM have an attribute 0. In this example, the DICT-ITEM's attribute 0 is PRICE, while the first DATA-ITEM's attribute 0 is 33-172, which happens to be the part number. In a DICT-ITEM, the ITEM-ID names the elements, which in turn define a DATA-ATT. In turn, the ITEM-ID of a DATA-ITEM is the key for retrieval and names all of the elements in the associated DATA-ITEM.

 As you can see in figure 4, there is more to a defining item in a data dictionary than a name. Eight of the other 10 dictionary attributes can specify important parameters about this data attribute.

 In our sample, the data-dictionary file contains DICT-ITEMs PARTNUMBER, DESCRIPTION, QUANTITY-ON-HAND, PRICE, and VALUE. To see what defining a DATA-ATT involves, let's look at the DICT ITEM PRICE (see figure 4).

 The first DICTATT in the DICT-ITEM is the ITEM-ID, in this case PRICE. It is the name for the data stored in its associated DATA-ATT. The second DICT-ATT is an A, for attribute. This tells the system that this DICT-ITEM defines a DATA-ATT. (This is one of about a half-dozen possibilities for DICT-ATT l.)

 The next DICTATT is the AMC, or attribute mark count. It tells the system which DATA-ATT this DICT-ITEM defines. Counting the ITEM-ID as AMC 0, the DATA-ATT is the fourth DATA-ATT from the beginning of the item, so the AMC is 3.

 The next DICTATT is the column heading to be used when the DATAATTs are displayed or printed out. The heading can be anything and can occupy more than one line on the display if needed.

 DICTATT 4 (which is not used in this example) is used when a DATA-ATT contains multiple values or sub-values that are directly related to values or subvalues in another DATA-ATT. For instance, a jeweler's inventory might have a particular kind of watch with multiple values in the DATA-ATT for style and multiple values in the DATAATT for price. DICT-ATT 4 provides a way to match those sets of values and make sure the proper pairs appear together on displays or printouts.

 DICT-ATTs 5 and 6 aren't used in a DICT-ITEM defining a DATA-ATT.

 DICT-ATT 7 specifies any needed conversions. An entry here tells the system to apply some sort of formatting, masking, or other conversion process to the DATA-ATT before printing or displaying it.

 Remember, in Pick the output specifications and the internal representation of data are only loosely coupled. This is one of the secrets of the system's flexibility. To take a simple example, Pick offers several options for displaying the date. Actually, Pick stores dates internally as the number of days after December 31, 1967 (a date, by the way, of no apparent significance to anyone except Pick's developer, Richard Pick). Similarly, time is figured internally as seconds after midnight, but it can be displayed as military time, regular 12-hour time, hours-minutes-seconds, or whatever.

 Although the starting date for the system's internal representation of the date may be arbitrary, the method used to store the date is well thought out. Most systems and applications programs do it differently. For instance, many of them simply store the year as a two-digit number (i.e., 84). In these systems, dates are compared by subtracting one two-digit date from another one. Right now, these methods work, but in another 15 years, installations using them are going to face a nasty problem. The two-digit systems and the software written on them assume that the most recent year is the highest numbered. When they go from 1999 to 2000 that won't be true, and a lot of algorithms will fail. By storing its date internally as days since (or before) a given day, Pick avoids that problem.

 The purpose of the conversion specification in DICT-ATT 7 is to tell the system how to convert the DATAATT before displaying or printing it. The list of available conversions that comes with Pick takes up several pages in the programmer's guide. Obviously, it would be much simpler to use a code in DICT-ATT 7 than to write a program to format or convert data.

 In this example, DICTATT 7 is MR2. That tells the system to display the data with two decimal places.

 DICTATT 8 is the correlative for this DATA-ATT. A correlative specifies some type of computation to be performed on the data before further processing.

 DICT-ATT 9 gives information on justification . In this case, the DATAATT will be right justified when printed or displayed.

 DICTATT 10 specifies that the DATAATT will be allotted seven spaces when it is printed or displayed.

 As mentioned, a DICT-ATT doesn't have to represent an actual DATA-ATT. It can represent a pseudoattribute​-a DATA-ATT that is calculated rather than stored.

 Figure 5 shows a DICTITEM for such a DATA-ATT. There is no DATA-ATT in the data file for VALUE, which is defined as price times quantity on hand. However, it can be calculated.

 The DICT-ITEM VALUE is the same as any other DICT-ITEM. The ITEM-ID is VALUE; it has an A in DICTATT I to indicate that it works with a DATAATT. The AMC, however, is arbitrary. Since it doesn't refer to an actual DATA-ATT, it can be 0 or 99 or any other number. The print heading is TOTAL VALUE. DICT-ATT 7, the conversion , indicates that the results are to be displayed with two decimal places and with commas between each group of three digits (as in the number 100,000,000.00).

 The real change is in DICT-ATT 8. It indicates that this DATA-ATT is to be calculated as the product of DATA-ATT 2 times DATA-ATT 3. The remaining DICTATTs show the DATA-ATT is to be right justified and allowed 10 spaces on the display.

 This kind of pseudoattribute is not limited to the data in a single item. It can return and use data stored in other files in the user's account-or even other accounts.

 In these examples , we have just touched on the power of conversions and correlatives . The conversion and correlative routines are numerous and well-chosen for information management in business.

OTHER DICTIONARIES

Above the data dictionaries in the Pick hierarchy are master dictionaries, one for every user account on the system. A master dictionary contains the names and locations of the files belonging to the user. It also contains synonyms for files in this account and other user accounts, verb definitions for Access and other utilities, attribute-defining items for dictionaries below it, user-cataloged programs, and stored procedures. Like a data dictionary or any other Pick file, a master dictionary is composed of items and attributes. When you log onto Pick, you attach to a master dictionary. Unlike some operating systems, more than one user can be active on a master dictionary at once.
 At the top of the tree is the system dictionary. Among other things, it includes the names of the user accounts and synonyms to the user accounts as well as the password and system privilege level for each user.

NEXT MONTH

In part 2, we'll take a close look at Pick BASIC, stored command sequences, terminal control features, and other Pick attributes.
ACKNOWLEDGMENT

The authors would like to thank Dennis Gallagher of Pick Systems Inc. for his assistance with this article.

REFERENCES

1. Overview of the Pick Operating System. Anaheim, California: General Automation, 1982.

2. Sisk, Jonathan E. The Pick Pocket Guide. Irvine, California: Pick Systems Inc., 1982.

3. Zarrella, John, ed. The Pick Operating System: Microcomputer Operating Systems, vol. III. Suisun, California: Microcomputer Applications, 1984.

.......................................

Rick Cook (2318 West Hayward, Phoenix, AZ 85021) is a freelance writer specializing in computers and high technology. He has written for Popular Computing and many other computer magazines.

John Brandon (2432 West Peoria Ave., Suite 1303, Phoenix, AZ 85029) has worked with the Pick operating system for eight years and is president of Interactive Systems, a Phoenix corporation that supplies software, education, and consulting for the Pick operating system.
Figure � SEQ Figure * ARABIC �1�: The Pick file hierarchy. There is only one system dictionary on the Pick operating system. Beneath it are any number of master dictionaries, one for each account on the system. Each master dictionary can have any number of data dictionaries beneath it, and each data dictionary points to one or more data files. A master dictionary and the subsidiary dictionaries and data files make up a user account on Pick.

Figure � SEQ Figure * ARABIC �2�: Data in a Pick file. This illustration shows three data items (records) from a Pick data file. In Pick, data is stored as unformatted strings of ASCII characters. The caret is the Pick convention for representing the separation of attributes (fields). Attributes are numbered by an attribute mark count (AMC) indicating their position in the item. A file may contain an unlimited number of items and within items attributes are totally variable in length.

ATTRIBUTE 0, MODULO, AND SEPARATION

The reason for the attribute 0 size limit and the requirement that attribute 0 be unique has to do with its function. Attribute 0 is a keyword that identifies the item, so it must have a unique identifier. In addition, the system uses it to determine where to store the item on the disk.

 The data and program storage space in Pick, both RAM (random-access read/write memory) and disk, is divided into "frames'-pages of 512 bytes each. For programming purposes, the frames on disk are organized into "groups" of frames, and a file is usually divided among several groups. When an item is added to a file, the system puts the keyword (in attribute 0) through a hashing algorithm and the result determines the group in which the item will be stored. Since it is possible for several ITEM-IDs to hash to the same group, the hashing algorithm doesn't give a unique location for the item. What the algorithm does do, however, is quickly determine which group of frames the item will be stored in-and which group to search to retrieve it.

 If the space allocated for that group is full or if the item overflows (grows beyond the space available in that group), additional frames will be drawn from the pool of unallocated storage, linked to the group, and the data will be stored in them. If the item shrinks, the frames will be unlinked and returned to the pool of available storage space.

 The advantage of this system is that no matter how big a file gets, the search for any item or part of an item will be limited to one group of frames and it takes relatively few motions of the disk head to find an item. In other words, group size rather than file size determines search time.

 The matter of group size is particularly important because of the way Pick divides resources among users. Each user on the Pick system gets a share of the system's time, called a time slice. The user's time slice ends either after a certain interval or before that if the user's application needs a page that's not in RAM. In the latter case, the operating system makes note of the user's need for a fresh page and goes on to the next user. When the first user's turn comes around again, the operating system has obtained the needed page and processing continues. Naturally, this is all invisible to the user. The only thing that isn't invisible is the time that it takes.

 Suppose a file occupies five pages of memory and is organized into a single group, and suppose that the data sought is at the very end of the group. The operating system finds the group immediately by applying the hashing algorithm to the ITEM-ID, but then the system has to search sequentially through the group for the data. It starts searching at frame 1, doesn't find the data, needs to go to the next frame, and loses the time slice. The same thing happens at every frame boundary and it takes four time slices to find the data.

 Now suppose the same file is organized as five groups of one frame each. This time the operating system goes to frame 5 and finds the data on the first search. The system seems much faster to the user and it is certainly more efficient.

 On the other hand, making the number of groups too large is also inefficient. Each group occupies at least one frame in memory. If the programmer sets the number of groups (modulo) at 10 for a file that holds only one item, the other nine frames are wasted.

 Pick allows the programmer to change an item's modulo at any time. The system generates a report called "filestat" (for file statistics) that indicates how much overflow there is in each file. When the overflow becomes excessive, the programmer can change the modulo of the overflowing files, thus reducing the overflow.

 Reducing overflow is one of the fastest ways to speed up a poorly performing Pick system. The other one is to add RAM. Due to the design of the system, adding hard-disk storage makes no difference in operating speed.

 It is also possible to set the initial number of frames in each group, or "separation:' When the separation is more than one, the frames allocated will be contiguous on the disk. In theory, choosing the proper separation should have a major impact on system performance, since the frames in a group could be accessed with minimum disk-head movement. In practice, it usually doesn't matter. Most of the time, another user will require disk access between your disk accesses, which effectively randomizes the head position. Most Pick programmers leave the separation at one.

Figure � SEQ Figure * ARABIC �3� : The relationship of data dictionaries and data files. The data dictionary on the left contains data dictionary items with the ITEM-IDs PARTNUMBER, DESCRIPTION, QUANTITY-ON-HAND, PRICE, and VALUE. Each of these dictionary items defines a data attribute in the associated inventory data file. The dictionary item PRICE defines the fourth data attribute of every data item in the inventory file. The Access sentence asks for a list of data items in INVENTORY and instructs the system to display only the description , quantity on hand, price, and value.

Figure � SEQ Figure * ARABIC �4� : Data dictionary item definitions. A dictionary item defining a data attribute consists of eight dictionary attributes, each with its own function. Note that dictionary attribute 7, the conversion attribute, specifies the form in which the data attribute will be displayed. In this case, MR2 converts 2550 into 25.50 for display purposes. The final two dictionary attributes specify that the item will be displayed right justified and will take up seven spaces on the screen or report.

Figure � SEQ Figure * ARABIC �5�: A dictionary item defining a pseudoattribute. VALUE is calculated by multiplying the contents of data attributes 2 and 3, a process specified by the information in dictionary attribute 8. The AMC in dictionary attribute 3 is a dummy and is ignored by the system.

